Big data means, the sets of data that are so complex and large that the data processing tools and technologies cannot cope with those datasets. The process of inspection of such data and uncovering the patterns which are hidden in it is termed as big data analytics.
The basic question that arises in our minds is, in what way is the drug discovery related to big data analytics? or how is data analytics useful in the process of drug discovery? The process of drug discovery requires the analysis, collection and processing of unstructured and structured biomedical data which is of large volume from surveys and experiments gathered by pharmaceutical companies, laboratories, hospitals or social media.
The process of drug discovery requires the analysis, collection and processing of unstructured and structured biomedical data which is of large volume from surveys and experiments gathered by pharmaceutical companies, laboratories, hospitals or social media. This huge amount of data may also include data regarding sequencing and gene expression, molecular data which is included in drug data, data consisting of drug and protein interaction, data of electronic patient records and clinical trials, self-reporting and patient behaviour data in social media, data of regulatory monitoring, and literatures where protein-protein interactions and drug repurposing and trends may be found.
To examine in detail, such diversified types of data in huge volumes for the purpose of tools for drug discovery, we need to have algorithms that are scalable, efficient, effective and simple. We now discuss how the recent innovations in big data analytics improves the process of drug discovery. Algorithms are developed to uncover the patterns which are hidden in such data as unreported, discussions on drug side-effects in social media communications, sequencing and patient record data, drug-protein interactions and regulatory monitoring data, data regarding chemical-protein interactions etc., for the prediction of drug side-effects and how these types of predictions can be used to identify the possible drug structures with different necessary features. Big data analytics also contributes to much better drug efficiency and safety for regulators and pharmaceutical companies.
Big Data Analytics in Drug Discovery
 Upon implementing several measures of big data which are technology-enabled, pharmaceutical companies can enlarge the data they gather and enhance their approach to analysing and managing this data.
1.Integration of all the data
One of the biggest challenges facing R&D organizations of the pharmaceutical companies is having the data that is well-linked, consistent and reliable. Data is the foundation upon which the analytics which are value-adding are built. Integration of efficient end-to-end data establishes an authoritative source for all the bits and pieces of information and correctly links different data that cannot be compared regardless of the source. Smart algorithms that link clinical and laboratory data, for example, could create the reports that are automatic which identify the applications or compounds that are related and raise the red flags related to efficacy or safety.
2.Internal and External collaboration
R&D of pharmaceutical organizations is a secretive activity which is conducted within the R&D department with little external and internal collaborations. Pharmaceutical companies can extend their data networks and knowledge by enhancing their collaborations with external partners. Whereas end-to-end integration improves connecting the elements of data, the main aim of this collaboration is to improve the connections among all the stakeholders in delivery, commercialization, and drug research and development.
3.Make use of IT-enabled portfolios for data-driven decision making
To make sure that the allocation of scarce R&D funds is appropriate, it is critical to quickly accomplish the decision making for pipeline and portfolio progression. Pharmaceutical organizations find it really challenging to make accurate decisions about which assets to retain and which ones to kill. The financial or personnel investments they have made already may affect the decisions at the expense of merit. They also lack decision-support tools that facilitate making calls which are considered tough. IT-enabled portfolio management enables the decisions which are data-driven to be made seamlessly and quickly. Smart visual dashboards must be used whenever there is a possibility to facilitate effective and rapid decision making.
4.Influence the new discovery technologies
Pharmaceutical R&D must continue the usage of cutting-edge tools. These include biology systems and technologies that produce huge data very quickly. One of the examples for the technologies that produce huge data quickly is next-generation sequencing. This technology will enable the sequencing of an entire human genome within 18 to 24 months and at a cost of $100. The improved analytical techniques and wealth of new data will intensify the innovations of the future and feed the pipeline of drug development.
5.Deployment of devices and sensors
Advancements of instrumentations using bio-sensors which are miniaturized and the evolution of the latest smartphones and their applications are resulting in health-measurement devices that are increasingly sophisticated. Pharmaceutical companies are using smart devices to gather huge real-world data which was not available previously to scientists. Monitoring of patients remotely through devices and sensors constitutes an immense opportunity. This type of data can be used to analyse drug efficiency, facilitate R&D, create economic models which are new combining the provision of drugs and services and enhancing the future drug sales.
6.Raise the efficiency of clinical trials
A combination of smarter, new devices and exchange of fluid-data will enable improvements in design of clinical trials and outcomes as well as higher efficiency. Clinical trials will become much highly adaptable to respond to drug-safety signals which are seen only in small but subpopulations of patients that are identifiable.
The following are the challenges facing the transformation of big data in pharmaceutical R&D:
a.Organization
The silos in an organization results in data silos. Functions usually have responsibility for the data and systems they contain. Adopting a view which is data-centric, with a clear owner for each type of data through the data-life cycle and across the functional silos, will greatly enhance the ability to share and use data.
b.Analytics and Technology
Pharmaceutical companies are following the legacy systems containing disparate and heterogeneous data. These legacy systems have become a burden for these companies. Enhancing the efficiency to share data needs connecting and rationalizing these systems. There is also a scarcity of human resources supplied with a specific task of improving the analytics and technology needed to extract maximum value from the existing data.
c.Mindsets
Many pharmaceutical organizations believe that unless they find a future state which is ideal, there is very little value to investing in enhancing the analytical capabilities of big data. Pharmaceutical organizations should gain knowledge from more enterprises which are entrepreneurial that see a lot of worth in the incremental improvements that get emerged from small-scale pilots.
Using big data in pharmaceutical companies through the implementation of these ways which are technology-enabled, could slowly turn the tide of diminishing success rates and sluggish pipelines.
The advantages of big data in Pharma R&D
Conclusion
Effective utilization of the big data opportunities can help pharmaceutical organizations better determine new candidates that have the capacity to develop into drugs and develop them into reimbursed, approved and effective medicines more quickly. Learning big data is of so much use today because of its wide range of applications. Many multinational organizations like Google, Microsoft, Deloitte, ZS Associates and so on are preferring the candidates with training and certification in big data. A fresher with training in big data is getting almost double the salary of a normal fresher. Candidates are getting 30%-300% hikes on their usual salaries post completion of the certificate program in big data. So, choosing big data as a career option and gaining expertise in it can be an excellent career option.
Facebook Comments